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has the holohedry m_L2_L2. (Veysseyre et al., 1991). 
The subgroups of this holohedry are the following: 

2_1_2; 2/m; 14, 1, 1; I_L2; mll4; 
1; 2; i4; m; 1; 1. 

All these PSGs are DIPSGs of E 5. Therefore this 
family is a DI crystal family. 

(2) The eleven DI crystal families of E 5 
In space E 5, eleven crystal families are DI families. 
In Table 5, we give their names, together with the 
WPV symbols of their holohedries and of their PSGs. 

Concluding remarks 

The study of the different possibilities for the entries 
of the modulation vectors to be either rational or not 
enables us to define the DIPSOs, then the DIPSGs 
and the DI crystal families. 

de Wolff, Janssen & Janner (1981) published a list 
of Bravais classes of the crystal families of E 3 

necessary for the study of incommensurate phases of 
internal dimensions equal to 1, 2 or 3 and they pro- 
posed a notation for these Bravais classes. 

In a previous paper, we established a connection 
between the two approaches and the two notations 
for the mono-incommensurate structures (Grebille, 
Weigel, Veysseyre & Phan 1990). 

In a forthcoming paper, the same work will be 
developed for the di-incommensurate structures and 
some physical examples studied. 
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Abstract 

The phase problem of membrane diffraction is usually 
solved by the swelling method; however, this method 
does not always resolve the phases unambiguously. 
An alternative method of phase determination using 
anomalous dispersion is illustrated by the multiple- 
wavelength diffraction of membranes containing 
gramicidin ion channels. The anomalously scattering 
atoms are thallium ions bound to the channel. The 
result determines the location of the ion-binding sites 
in the gramicidin channel and the electron-density 

* On leave from Center for Fundamental Physics, University of 
Science & Technology of China, Hefei, Anhui, People's Republic 
of China. 

t To whom correspondence should be addressed. 

0108-7673/91/050553-07503.00 

profile of the membrane. The applicability and limi- 
tation of the anomalous-dispersion method are 
discussed. 

Introduction 
Membrane scattering has been used to determine the 
structures of membranes and to reveal structural 
properties of molecules embedded in membranes, 
such as cholesterol (e.g. Franks & Lieb, 1979), 
rhodopsin (e.g. Yeager, 1975) and ion channels (e.g. 
Olah, Huang, Liu & Wu, 1991). When membranes 
are in the smectic liquid-crystaIline form, the reso- 
lution of membrane diffraction is usually limited to 
a few ~ngstr6ms. Nevertheless, if heavy atoms in the 
system are bound to a few well defined sites, it is 
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possible to determine their locations accurately using 
the low-resolution data. In view of the fact that struc- 
tural data for membrane molecules are extremely 
difficult to obtain, membrane diffraction is indeed a 
valuable tool for membrane studies. 

The standard way of solving the phase problem for 
membrane diffraction is the swelling method. Diffrac- 
tion by a membrane sample is recorded at varying 
degrees of hydration. The phases are then determined 
by assuming that structure factors plotted in 
reciprocal space form a single smooth curve as the 
lamellar spacing changes with hydration. This 
assumption is justified if the bilayer structure is 
unchanging or changing slightly and continuously 
with hydration (Torbet & Wilkins, 1976). However, 
the swelling method does not always resolve the 
phases unambiguously. For example it does not work 
well if the range of swelling (i.e. the variation of the 
lamellar spacing) by hydration is small or if the 
bilayer structure changes significantly with hydration. 
It is therefore desirable to develop an alternative 
method of phase determination. In this paper we will 
discuss an application of the anomalous-dispersion 
technique to membrane diffraction. In particular, we 
will solve the phase problem of the diffraction from 
a membrane containing the gramicidin channel, 
which is a prototypical ion pore in biological mem- 
branes. The anomalously scattering atoms are T1 ions 
bound to the channel. The result determines the loca- 
tion of the ion-binding sites in the gramicidin channel. 

The principle of this technique was recently 
reviewed by Karle (1989). The atomic scattering fac- 
tor of an anomalously scattering atom may be written 
a s  

f = f f  +f'~ + if~, (1) 

where f "  is the nonanomalous scattering factor 
measured at a wavelength much shorter than any of 
the absorption-edge wavelengths of the atom, and f~ 
and f~( are the real and imaginary parts of the disper- 
sion correction; the wavelength (h) dependence of 
the anomalous dispersion is denoted by the subscript. 
Correspondingly, the structure factor of anomalously 
scattering atoms is written as 

F~h = F~, + F~h, (2) 

where h is the vector of the Miller indices and 

N 

F~,= Z f ~  exp (2rrih. rj), (3) 
j = l  

N 

F~h = Z (f'~j + if]j) exp (27rih. rj). (4) 
j = l  

rj is the position of the j th  atom. The dispersion 
corrections are treated as constants of h and, for 
simplicity, written as 

f'a; + if'~i = f~,j exp (i6,./). (5) 

We also write 

Fg = IFr, I exp (i¢h). (6) 
Suppose that there is only one type of anomalous 
atom in the crystal. Let F'~,h represent the structure 
factor of nonanomalous atoms and F~,h the non- 
anomalous structure factor of the anomalously scat- 
tering attoms. It is straightforward to show that 
(Katie, 1989) 

IF, hi 2-- I Fv.I  2 +[1 + Q(Q + 2 cos a2., )]l F~,~I ~ 

+ 2(I + Q cos t~2. A)IFV,I IF~.I cos ( ~ , . . -  ~2.h) 

+2Qsina2.~IFT.,,llF'L,,Isin(,;,.,,-,p2.,,). (7) 
On the right-hand side of this expression, the 
wavelength dependence is contained in the factors 
Q(=f~.,~/f'~.h) and ~2.~[=tan -' (f'~.,~/f'2.,)]. They are 
either measured or theoretically calculated. 

So far most of the applications have been applied 
to noncentrosymmetric crystals (Kahn, Fourme, 
Bosshard, Chiadmi, Risler, Dideberg & Wery, 1985; 
Hendrickson, Smith, Phizackerley & Merritt, 1988; 
Guss, Merritt, Phizackerley, Hedman, Murata, 
Hodgson & Freeman, 1988; Murthy, Hendrickson, 
Orme-Johnson, Merritt & Phizackerley, 1988; Hen- 
drickson, Pahler, Smith, Satow, Merritt & Phizacker- 

F" F" Icy, 1989). For such systems, we have I i.hl=[ ;.~[ 
and ~P",.h = --~P'I~.~ # 0 or -n'. The quantities I F,.hl" ~,I F~.hl" 2. 

F n  n n n I , . I IF2.I  cos (W,.h--~2.) and IF,.hllF2.hl sin (~,.h-- 
¢2.h) can, at least in principle, be determined by 
solving four equations of the form of (7) generated 
by measuring [F,h[ 2 and [F,~[ 2 at two different 
wavelengths. The technique of anomalous dispersion 
for these applications often makes use of the fact that 
[F, hI2#IFAf,[ 2. Such a method is not applicable to 
membrane diffraction. 

Most membrane samples consist of centrosym- 
metric bilayers. In this case, we have ~0~'h = ¢,"~ = 0 or 

n rr and Fxh = F~,~. Since F i ,  h and F~, h a r e  real quan- 
tities, (7) reduces to 

IF, hi 2= F'~.h 2 + aahF~.h 2 + b, hFT.hF'~.h, (8) 

with 

a~h = 1 + Q ( Q + 2  cos 62.,), (9) 

bah = 2(1 + Q cos ,~2.,). (10) 

It is clear that it is impossible to solve for the signs 
of F~'h and F'~.h from equations of the form of (8). 
Only their absolute magnitudes and their ratio gh = 
F'~.h/ F" ~.h can be determined from such equations, as 
(8) is equivalent to 

"~ n 2 ]Fah]2=(l+aahg~,+bahgh)Fl.h . (11) 

Nevertheless, we will show that, for the example we 
consider in the following, it is possible to solve the 
phase problem with the use of Patterson's (1934) 
function. 
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Gramicidin channel 

Gramicidin is a linear pentadecapeptide which spon- 
taneously inserts into black lipid membranes and 
forms transmembrane ion channels. Because of its 
simplicity, the channel has served as a prototypical 
model for the study of ion permeation across bilayer 
membranes. It is now generally accepted that the 
gramicidin channel is a cylindrical pore formed by 
two monomers, each a single-stranded /56.3 helix, 
hydrogen-bonded head-to-head at their N termini 
(Urry, 1985; Arseniev, Barsukov, Bystrov, Lomize & 
Ovchinnikov 1985). However, the structural details 
of the channel are unknown. Recently we used uni- 
formly aligned multilayer samples of membranes con- 
taining gramicidin and measured the X-ray diffrac- 
tions of such samples with and without ions (T! +, K +, 
Ba 2+, Mg2+). The phases of the reflections were deter- 
mined by the swelling method. From the difference 
electron-density profiles, we found a pair of sym- 
metrically located ion-binding sites for Tl ÷ at 
9.6 (3) ~ and for Ba 2+ at 13-0 (2) ,~ from the midpoint 
of the gramicidin channel (Olah et al., 1991). This 
was the first X-ray diffraction on gramicidin in its 
membrane-active form. It seemed to us that this would 
be a good system for testing the anomalous-dispersion 
method. 

Experiment 

Materials and preparation of samples 

The materials and sample preparation were the 
same as described by Olah et al. (1991). Briefly, a 
hydrated mixture of gramicidin, dilauroylphos- 
phatidylcholine (DLPC) and thallium acetate (in the 
molar ratio 1/10/1) was aligned into uniform multi- 
layers between a polished Be plate (314 i~m x l0 mm 
diameter) and a silica plate. The thickness of the 
multilayers was about 10 I~m. The alignment was 
inspected from the silica side with a polarized reflec- 
tion microscope (Huang & Olah, 1987). X-ray diffrac- 
tion of the multilayers was performed from the Be 
side. 

Synchrotron-radiation source 

The experiment was performed at the F2 station 
of the Cornell High Energy Synchrotron Source 
(CHESS). An Si(111) double-crystal monochromator  
was used to produce a tunable X-ray beam of approxi- 
mately 1 eV bandwidth over the required range of 
wavelength. A total-reflection mirror was set in the 
X-ray path to remove the energetic photons higher 
than 14 keV. The energy of the monochromatic X-rays 
was calibrated to be 11.919 keV at the LH~-absorption 
edge of Au foil. The wavelength at another angular 
setting of the monochromator  was calculated assum- 
ing d = 3" 1352 A. The beam path from the source to 
the center of the experimental hutch is 22 m. Two 0.5 

(vertical) x 1 mm (horizontal) slits before the mirror 
were used to define the incident beam. The incident- 
beam intensity was monitored by an ion chamber 
(N2) placed after the mirror. 

X-ray absorption spectra and anomalous scattering 
factor 

Theoretical values of anomalous scattering factors 
are available (Cromer, 1983). But the method of com- 
putation for these values was crude, particularly near 
the absorption edges. In principle, the imaginary part 
can be obtained by measuring the atomic absorption 
coefficient; the real part can then be calculated by 
using the Kramers-Kronig relations (James, 1982). 
However, the normalization of the atomic absorption 
coefficient is in practice rather difficult. Thus we nor- 
malize the measured absorption coefficient to the 
theoretical values far from the absorption edges. 

The absorption spectrum of a TI atom near its L ~  
edge (12.658 keV) was measured in the fluorescence 
mode from the same material that was used for 
diffraction measurements. A solid-state detector with 
a multichannel analyzer was used to count the fluores- 
cence intensity Is(E) as the energy E of the X-rays 
was varied. The incident-beam intensity Io(E) was 
monitored by an ion chamber. The spectrum was 
taken in five segments: pre-edge 12.20 to 12.50 keV 
in 10 eV steps; 12.50 to 12.62 keV in 5 eV steps; near- 
edge 12.62 to 12.70keV in 1 eV steps; 12.70 to 
13.00keV in 3eV steps; tail 13.00 to 13.80keV 
in 10eV steps. The fluorescence spectrum R =  
I s (E) / Io (E)  was reduced to the atomic absorption 
coefficient/J,,, (E)  by fitting it to the theoretical values 
(Cromer, 1983) outside the edge region as follows. 

i ~ ( E ) = s R - [ a + b ( E - E o ) + c ( E - E o ) 2 ] .  (12) 

s is the scaling factor and Eo is the edge energy 
12-658 keV. The quantity in the square bracket is the 
background partly due to the scattering effect and 
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Fig. 1. l h e  anomalous  scattering factor  of  the I l  a tom near  the 
L m edge. f '  is the real part  and f "  the imaginary part. The 
numbers  are the wavelengths (,~) at which the reflections were 
measured. 
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Table 1. Structure factors measured at four wavelengths 

h q = 4 r r ( s i n  0 ) / h  ( , ~ - ~ )  I ( 0 . 9 7 6 3  A )  1 ( 0 . 9 7 7 8  A )  I ( 0 . 9 7 9 4  ,~,) 

I 0.1456 0.747 0.745 0.746 
2 0-2912 0-435 0-429 0.433 
3 0.4368 1-48E - 02 ! .61E  - 02 1.49E - 02 
4 0.5823 2.07E - 02 2 .21E - 02 2 .09E - 02 
5 0.7279 I. 10E - 03 0 .84E - 03 1.06E - 03 
6 0.8735 7 . 1 3 E - 0 3  6 - 9 3 E - 0 3  7 . 1 3 E - 0 3  
7 1.0191 6 . 1 2 E - 0 4  4 . 8 5 E - 0 4  5 . 6 9 E - 0 4  
8 1.1647 2.26E - 04 3 .10E - 04 2.87E - 04 

* de l ta  = [ 1(0.9778 ,~,) - I(  1-004 , ~ ) ] / ! (  1-004 ,~.) ind ica tes  the  percent  

I ( 1 " 0 0 4  ,~)  d e l t a  * ( % )  

0.749 - 0 . 5  
0.439 - 2 - 3  
1 . 3 9 E - 0 2  16 
1 . 9 5 E - 0 2  14 
1 . 2 7 E - 0 3  - 3 4  
7-30E - 03 - 5 . 1  
6 - 9 1 E - 0 4  - 3 0  
2 . 7 5 E - 0 4  13 

c h a n g e s  due  to the  a n o m a l o u s  d i spers ion .  

Table 2. Atomic scattering factor of thallium near its Lil~-absorption edge and the factors aah, bah 

,~A) 
f ~  
f7 
f~ 
h 
I 
2 
3 
4 
5 
6 
7 
8 

0"9763 0.9778 0-9794 1.004 
- 15"71 - 2 3 " 0 0  - 16.00 - 10"38 

10.04 7"52 4-24 4-04 
18-64 24"20 16.64 11" 14 

q f~,  a~h  b~h a~h  b~h a~h b~h a~h  bah  

0-1456 79-7 0-661 1"606 0-515 1'423 0 '640 1-596 0 '759 1"740 
0-2912 79.4 0 '659  1"604 0-513 1'421 0 '639 1"595 0 '758 1"739 
0"4368 79.0 0-658 1 '602 0"512 1 '418 0"637 1-592 0-757 I "737 
0"5823 78"6 0-656 1 '600 0-509 1 "415 0 '635 1-590 0 '756  1 "736 
0"7279 78-1 0 '655 1-598 0"507 1 '411 0 '633 I "588 0 '754  1"734 
0"8735 77"6 0"653 1"595 0-504 1'407 0"631 1'585 0"753 1'732 
I "0191 77-0 0-650 1 '592 0-501 1 "402 0"629 i "582 0 '751 1-730 
!" 1647 76"3 0"648 1-589 0"498 1 '397 0-626 I '578 0-749 1 "728 

partly due to the energy dependence of the detectors. 
The fitting of (12) was carried out in the least-squares 
fashion using a, b, c and s as free parameters. 

The imaginary part of the anomalous scattering 
factor, f", is directly related to the atomic absorption 
coefficient (James, 1982): 

f ' (E)=(mc/2e2h)Etxa(E) .  (13) 

The symbols m, c, e and h refer to the fundamental 
physical constants with the usual meaning. The real 
part, f ' ,  is in turn calculated from the Kramers- 
Kronig relation 

o o  

f ' ( E ) = ( 2 / z r )  ~. [ E ' f ' ( E ' ) / ( E 2 - E ' 2 ) ] d E ' .  (14) 
0 

The results are shown in Fig. 1. 

Diffraction measurement 

The aligned multilayer sample was mounted on a 
goniometer head. The sample was covered by a 
humidity chamber equipped with Mylar windows, so 
that the water content of the sample remained con- 
stant during the diffraction measurements. (The Bragg 
diffraction of the Mylar films would not enter the 
detector.) Bragg diffraction was measured using the 
0-20 geometry on a Huber diffractometer. The 
incident-beam intensity was monitored by an ion 
chamber filled with N2. The diffracted-beam flux was 
counted by a solid-state detector with a multichannel 
analyzer. The detector slit was 0-5 (vertical) x 1 mm 
(horizontal). (The plane of diffraction was vertical; 
the distance from the sample to the detector was 

40-6 cm.) An to scan indicated that the mosaic spread 
of the sample was about 0.2 ° . To maximize the effect 
of anomalous dispersion, reflections were recorded 
at the wavelength o f f '  minimum (0.9778 A), that of 
f "  maximum (0.9763 A) and two other wavelengths 
below the edge at 0.9794 and 1.004 ,~ (Fig. 1). Eight 
Bragg peaks were recorded at each wavelength. 

Data reduction 

Data reduction included (1) background subtrac- 
tion, (2) corrections for the Be and sample absorp- 
tions and for the scattering volume, (3) corrections 
for the Lorentz factor and the atomic scattering factor 
[it should be pointed out that the Lorentz factor 
depends on the wavelength as well as the scattering 
angle, i.e. A/sin 20 (Warren, 1969)] and (4) correc- 
tions for the energy dependence of the air absorption 
in the X-ray path and the energy dependence of the 
ion chamber. The reduced magnitudes of the structure 
factors are given in Table 1. 

Solving the phase problem of centrosymmetric systems 

To solve (11), we first calculated the factors aah and 
bah [(9), (10)] by using the anomalous atomic scatter- 
ing factors for the TI atom determined above and the 
normal scattering factors from International Tables 
for X-ray Crystallography (1968) (Table 2). Since we 
have measured the magnitudes of the structure factors 
F~h[ 2 at four different wavelengths, we solved for 
r,F~.h, IF~.h and gh by using four equations of the 

form of (11) in a least-squares fashion (Table 3). We 
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Table  3. IF,,,,I, IFr,,,I and g~ 

h q IF;'.,,I IF~'.,,I g. 
1 0-1456 0"850 1"70E-02 2"0E-02  
2 0"2912 0"620 4.96E - 02 8"0E - 02 
3 0"4368 0"167 5"68E-02 -0 .34  
4 0-5823 0-189 5-66E-  02 -0"30 
5 0"7279 3"78E-04  4 ' 0 6 E - 0 2  107 
6 0"8735 7"33E - 02 1-39E - 02 0" 19 
7 i "0191 3.26E - 03 2.66E - 02 8.2 
8 1.1647 2"18E-02 0 . 6 1 E - 0 2  --0.28 

note that, because the sign of g, is solved, the entire 
phase problem is solved if one can determine the 
phases of F~ , .  The special feature of a centrosym- 
metric system is that whereas in a noncentrosym- 
metric system the phase factor exp (i~) can take on 
any value on a unit circle in the complex plane, in a 
centrosymmetric system the phase factor can be only 
one of two discrete values, 1 or - 1 .  Experimentally 
one needs only to determine the sign of F~ , .  Thus 
we put forth the following hypothesis: Provided there 
are only a few discrete positions for the anomalous 
atoms, it is likely that the approximate positions of these 
atoms will determine the correct signs of F~,h. The 
justification for this hypothesis will be discussed later. 
The approximate positions of the anomalous atoms 
will be obtained from the Patterson function. Once 
the phases of F~,h are determined, more-precise 
atomic positions are obtained from the direct Fourier 
transform of the structure factors. 

Patterson function of TI atoms 

We construct the Patterson function of TI atoms 
as follows: 

8 

P ( x ) =  ~ F~,h 2 cos(2rrhx/D), (15) 
h = l  

where D = 43.1 A is the lamellar spacing. The func- 
tion (Fig. 2) shows five distinct peaks on the Patterson 
coordinate, approximately at 0, 11.8, 18.7, 24.4, 

0 0 1 0  
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$ 
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Fig. 2. The  Patterson funct ion  o f  the TI ions.  
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i 
I 

31.3 A. In order to interpret this pattern, let us con- 
sider a unit cell consisting of 20 DLPC molecules, 2 
gramicidin monomers (which form one channel), 2 
thallium acetate molecules and a number of water 
molecules. If the electron density of the unit cell is 
plotted on the x axis (normal to the plane of the 
membrane) with the origin set at the mid-plane of 
the bilayer, the cell will range from - D / 2  to D/2 
and a centrosymmetric bilayer from - H / 2  to H/2 
(H  < D); from - D / 2  to - H / 2  and H/2 to D/2 is 
water; the gramicidin channel (whose length is less 
than H)  is centrosymmetrically embedded in the 
bilayer. Thus the positions of TI ions must also be 
symmetrically distributed; that is, potentially there 
are pairs of symmetric ion sites (x and - x )  and 
unpaired sites at x = 0 and D/2  (equivalently - D / 2 ) .  
It is easy to prove that five peaks in P(x) imply that 
there are three ion sites; two are a symmetric pair 
and one either at x = 0 or D/2. However, it is known 
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Fig. 3. ( a )  S c h e m a t i c  d iagram o f  the TI-ion distr ibution in the unit 
cell d e d u c e d  from the Patterson funct ion  in Fig. 2. There  are 
three ion sites. A and A' are located  a p p r o x i m a t e l y  at + 9 - 5 / ~ ;  
each on  average  is o c c u p i e d  by 0 .8  atom.  B is located  at the 
center o f  the water  layer, x = D/2, and is on  average  o c c u p i e d  
by 0 .4  atom.  The  heights  o f  the peaks  represent the average  
o c c u p a t i o n  numbers  and the widths  o f  the peaks  ( same  for all) 
are arbitrarily chosen .  (b)  The  Patterson funct ion  constructed  
from the s c h e m a t i c  ion distr ibut ion s h o w n  in (a ) .  This  is to be 
c o m p a r e d  qual i tat ive ly  with Fig. 2. 
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Table 4. Signs of structure factors 

h F ~ , h  g h  F ~ , h  F ~  

l - + - - 

2 - + - - 

3 - - + + 

4 + - - - 

5 + + + + 

6 - + - - 

7 - + - - 

8 + - - - 

Table 5. The range of the position of site A which gives 
the correct phase of F'~h 

h 1 2 3 

Range of site A (x=) 9.07 to 21.55 6.27 to 15.33 3.02 to 11.38 
F~ - - - 

4 5 6 7 8 

7.67 to 13.93 6.83 to 10.45 9.29 to 12.30 7-47 to 11.05 9.23 to 12-36 
+ + - _ + 

experimentally that the gramicidin channel does not 
transmit anions (Hladky & Haydon, 1984). Model 
studies show that anions do not enter the channel 
(Roux & Karplus, 1991); consequently, a cation- 
binding site at the center of the channel is highly 
unstable. It is certainly much more likely that the 
unpaired site is in the water layer at x -- D/2. Indeed, 
the best approximate solution (for the ion sites) to 
reproduce the five peaks of P(x) is one at x - - D / 2  
(designated as B in Fig. 3a) and a pair at x = ±9.5 
(designated as A and A' in Fig. 3a). These three ion 
sites would produce the following five Patterson peaks 
( Fig. 3 b) located at 0 (A 2 + A '2 + B 2 ) ,  D ~  2 - 9" 5 ~-- 12.1 
( B A + A ' B ) ,  2x9 .5-~19 .0  (AA'), D - 2 x 9 - 5 = 2 4 . 1  
(A'A), D/2+9.5--~31.1 ( B A ' + A B )  in the Patterson 
coordinates. 

Let A, A' and B be the average numbers of Tl ions 
at the sites A, A' and B, respectively. Since there are 
two ions in the unit cell, we have A + A' + B = 2. Since 
in P(x)  (see Figs. 2 and 3b) the peak heights of the 
( B A + A ' B )  peak and the (AA') peak are approxi- 
mately the same, we have 2B~-A. Hence we get 
A- -A ' -~  0.8 and B ~-0.4. This approximate distribu- 
tion is then used to calculate the phases of F~,h (Table 
4). Using the signs of gh, one then obtains the phases 
of F~,h and subsequently the complete structure fac- 
tors of the membrane F~ = F~.h + F~,h (Table 4). The 
electron-density profile of the membrane obtained 
from the Fourier transform of F~ is the same as the 
previous result (Olah et at., 1991). 
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Fig. 4. Four ier  t ransform of  F~. h gives the distr ibution funct ion 
o f  T1 ions. 

The Fourier transform of F~'.h gives the distribution 
function of Tl ions on the x axis (Fig. 4). It shows 
that two symmetric ion-bindin~g sites of the gramicidin 
channel are located at ±9.5 A from the center. Our 
previous study (Olah et al., 1991) using the swelling 
method and difference electron densities determined 
the ion-binding sites to be at 9.6 (3),~.. The present 
result from the anomalous-dispersion technique is in 
complete agreement. 

Justification of the hypothesis 

We noted above that the atomic positions deduced 
from the Patterson function are only approximate 
because the resolution of the Patterson peaks is rather 
poor. Nevertheless, we hypothesized that the phases 
determined by these approximate Tl-atom positions 
are likely to be correct. This is justified by the analysis 
shown in Table 5. We see that there is a range of 
position for the ion site A (and the corresponding 
one for A') that gives the correct phase to a Bragg 
order [we know the phase is correct from our previous 
experiment (Olah et al., 1991)]. As long as the Patter- 
son function determines the position of the A site in 
the range 9.29 to 10.45 ,~, we will obtain the correct 
phases for all Bragg orders. This example demon- 
strates the applicability as well as the limitation of 
the anomalous-dispersion method for membrane 
reflections. 
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Abstract 

It is shown that the non group-subgroup transition 
Pnam *->P21/b which the compound bis(propyl- 
ammonium) lead tetrachloride, (C3H7NH3)2PbCI4, 
undergoes must lead to domain structures on each 
side of the transition point. In both of them, the 
boundary operators are anticipated. 

1. Introduction 

Very recently (Zangar, Miane, Courseille, Chanh, 
Couzi & Mlik, 1989), an interesting non group- 
subgroup transition was observed in bis(propylam- 
monium) lead tetrachloride ( C 3 H v N H 3 ) 2 P b C I  4. The 
transition is reversible, occurs at 339 K under 1 atm 
(10SPa) and follows the sequence 

Pnam -. P21/ b 

(Z=4)  (Z=2)  

with increasing temperature. Z denotes, as usual, the 
number of formula units within a cell. 

Because of the transition, a domain structure is 
expected to appear (antiphase domains and twins by 
merohedry). All possible symmetry operators con- 
necting domains can be derived from the sole knowl- 
edge of space groups. To each boundary between 
domains is associated a coset of operators ( 'boundary 
operators'), which thus characterizes the type of 

0108-7673/91 / 050559-04503.00 

boundary. Any operator belonging to a coset trans- 
forms one variant into the variant on the other side 
of the boundary. Translation (antiphase) boundaries 
and twin boundaries are commonly observed, 
especially by electron microscopy or X-ray topogra- 
phy. In addition, group theory predicts in some cases 
mixed (i.e. glide reflections and/or  screw rotations) 
boundaries. The possibility of such a kind of boun- 
dary was first predicted in group-subgroup transitions 
(Guymont, Gratias, Portier & Fayard, 1976; 
Guymont, 1978) and indeed is very rarely observed 
(see, however, Jiang, Zhang, Hei & Kuo, 1985). A 
boundary is essentially an antiphase one as soon as 
at least one of the operators of the characteristic coset 
is a pure translation (Guymont, Gratias, Portier & 
Fayard, 1976). On the contrary, for a boundary to be 
essentially mixed (or 'translation-twin'), all the 
operators inside the characteristic coset must be 
mixed. 

The group-theory analysis was afterwards exten- 
ded to non group-subgroup transitions under rather 
general conditions (Guymont, 1981) and is applied 
here to determine the domain structures of 
(C3HvNH3)2PbCI4. 

2. Symmetry analysis of both structures 

The orthorhombic room-temperature structure of 
(C3H7NH3)2PbCla has been determined recently 
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